
Design of photonic metamaterial multi-junction solar cells
using rigorous coupled wave analysis

Eli Lanseya and David T. Crouseb

aDepartment of Physics
bDepartment of Electrical Engineering

The City College of New York, New York, NY, USA 10031

August 26, 2010

ABSTRACT

We have developed a method to design multi-junction horizontally-oriented solar cells using single-layer photonic
metamaterials. These metamaterial light harvesting templates are capable of separating white light into discrete
wavelength ranges and trapping it efficiently into different, separately wired cavities. Any number of different
wavelength-tailored charge separation complexes can be fixed to the walls of these tuned cavities. To design the
metamaterials we have developed a coupled wave analysis of 2D periodic metamaterials. Past results with 1D
gratings have shown that this is a very effective method for designing periodic structures and we have generalized
the approach to 2D periodic cavities.

Keywords: Metamaterial, multijunction solar cell, coupled wave analysis, cavity mode, light harvesting, opto-
electronic devices

1. INTRODUCTION

Anomalous optical transmission (AOT) through subwavelength apertures was first observed by T.W. Ebbesen
in 1998 and described in his article in Nature on optical characteristics of metallic thin films perforated with
subwavelength-sized apertures, an article that launched the field of research focused on metamaterials and
anomalous transmission.1 Ebbesen described transmission of light through apertures with diameters significantly
smaller than the wavelength of light being studied, a phenomenon thought impossible under the paradigm of
aperture theory.2,3

Research into metamaterials (also called plasmonic crystals) has advanced greatly since 1998, with many
novel and useful optical phenomena observed in these structures, including: negative index of refraction,4 light
concentration and trapping,5 and light distribution/beam splitting.6 Metamaterials can also increase the perfor-
mance of renewable (“green”) energy devices by selectively channeling and filtering light of different wavelengths
into separate subwavelength apertures or cavities.

One of us (D.T.C) has shown the effectiveness of light channeling and trapping produced by cavity modes
(CMs). He has found, both theoretically/numerically and experimentally,7–9 that CM-produced light trapping
can lead to exceptionally high light amplifications within the confined spaces of 1D cavities (gratings), allowing
charge-separation domains to be bathed in a constant supply of photons, even under low light conditions. In this
paper we describe a method of designing a horizontally-oriented multi-junction solar cell by creating an array of
cavities tuned with targeted CMs.

To design the metamaterials we have developed a coupled wave analysis of 2D periodic metamaterials. Past
results with 1D gratings have shown that this is a very effective method for designing periodic structures and
we have generalized the approach to 2D periodic cavities. In this paper we always assume an implicit e−iωt time
dependance. Additionally, unless specially noted, we use CGS units throughout this paper.
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(a) Overall geometry of the system. (b) Geometry of Floquet mode wave
vectors.

Figure 1. Geometry of the system and wave vectors.

The system we are modeling consists of a thin metallic film, perforated with a 2D array of rectangular cavities
with rectangularly periodic spacing. That is, if a template cavity is centered at the origin, the positions of the
centers of all the other cavities ~c are given by

~c = mΛxx̂+ nΛy ŷ (1)

where m,n are integers, and Λx and Λy are the lattice spacings in the x and y directions directions, respectively.
See Fig. 1(a).

This system is broken into three vertical layers: superstrate, metallic substrate and perforated cavity regions
of the film. We will expand both the electric and magnetic fields in terms of sets of basis functions appropriate for
each region. Namely, in the superstrate, where we expect the overall field to behave largely like plane waves, we
expand in terms of a basis set of plane waves satisfying the Floquet mode condition to be described in Section 3.
In the cavities, however, it is more natural to expand the field in terms of waveguide cavity modes. That is, for
rectangular cavities, the set of cavity modes will include be sine and cosine functions. This will be discussed in
Section 4.

2. SOLUTION STRATEGY

Our solution strategy, at the most basic level, is simply to apply electromagnetic boundary conditions at the
interfaces of the the metallic film and require continuity of the fields across the cavity interface. Furthermore, it’s
useful to decompose an arbitrary electromagnetic field into two orthogonal polarizations. Then applying these
conditions, multiplying by orthogonal basis functions and integrating over the interfaces will eventually yield a
set of equations for the field expansion coefficients.

2.1 Polarization schemes

Waveguide fields are usually broken down into TM (Bz = 0) and TE (Ez = 0) polarizations. In general, TEM
(Bz = 0 and Ez = 0) cavity polarizations can also exist, but for cavities of a single surface of reasonably
high conductivity these modes are non-existent. For coaxial and grating-type structures, and for lossy metals,
however, TEM modes must be included. These cavity polarizations are completely orthogonal; transverse fields
for each polarization are uniquely specified by the z-components of the field. Therefore, any arbitrary field
within the cavities with both Ez and Bz components can be split into TM and TE parts, and once Ez and Bz
are known, the remaining field components for each polarization can be calculated separately and independently
of the other.

We will likewise separate the fields in the superstrate into these two polarizations. Then, an incident plane
wave with TM polarization in the superstrate, for example, has a Ez component while Bz = 0. Continuity of the



E and B fields across the cavity interface ensures that the only cavity modes that can directly couple with this
incident TM plane wave are ones with Bz = 0, namely cavity TM modes. Then, the TE cavity modes, likewise,
will only directly interact with an incident plane wave with TE polarizations where Ez = 0.

However, scattered fields produced by this TM incident wave can, in general, have Bz components. But,
in order to satisfy the condition that the net Bz = 0, for a given scattered field with Bz 6= 0, there must be
other fields with equal and opposite Bz components. This leaves us, though, with the existence of scattered or
diffracted fields of both polarizations for an incident beam having a single polarization, and thus an incident TM
wave can, indirectly, couple to TE cavity modes through scattered fields.

As an illustrative example, we’ll consider a normally-incident plane wave. In our language, this beam has a
TEM polarization; both E and B must be perpendicular to the ~k = kẑ vector thus, there is neither a Bz nor an
Ez component to the fields. In practice, what this implies is that the incident beam can not directly couple to
any cavity modes. However, scattered fields can have both Bz and Ez, and thus even a TEM beam can couple to
both TM and TE polarizations. Thus, it is through scattering that coupling between TE and TM modes arises,
even for non-normal incident waves.

2.2 Boundary conditions
In order to solve our problem, we use different boundary conditions at different types of interfaces: Continuity of
fields across cavity-superstrate or cavity-substrate interfaces, so-called “surface impedance boundary conditions”
(SIBC) at metal-superstrate interfaces and a skin-depth approximation boundary condition (SDBC) at cavity
walls.

We require that the electric and magnetic fields remain continuous across the cavity-superstrate (and cavity-
substrate interfaces for open channels), as mentioned earlier. From Jackson,10 from Maxwell’s equations, we
have continuity of the electric displacement vector

ε1 ~E1,= ε2 ~E2, (2)

across a boundary between two regions 1 and 2. Similarly,

~H2 = ~H1 (3)

the magnetic field must be continuous (we assume µ1 = µ2 = 1) across the boundary, as well.

At metallic interfaces we have a choice of a few conditions. The simplest is that of a perfect conductor where

n̂× ~E = 0 (4a)

n̂ · ~H = 0 (4b)

evaluated at the surface, where n̂ is the unit normal to the surface.10

In a good conductor, however, the field does not stop immediately upon entering the metal. Instead, the
magnitude of the fields decay exponentially with a characteristic length

δ ≈ c√
2πωσ

, (5)

where σ is the conductivity of the metal, and δ is the “skin depth” of the field. In MKSA δ is10

δ ≈
√

2/ωσ. (6)

The skin depth is much smaller than any cavity dimension, and thus we expect the overall spacial dependance
of the fields to be largely similar to those of a perfect conductor. In this skin depth approximation, we assume
that at a depth greater than δ inside the metal, the field drops exponentially to zero so at that depth the metal
effectively becomes a perfect conductor. Thus, we apply the perfect conductor boundary conditions Eqs. (4) at
the skin depth, rather than at the metal surface.



We define
ζ ≡ δ

`
(7)

as the unitless ratio of skin depth to the characteristic cavity dimension `. We want to estimate the value of ζ.
To that end, only for this, we’ll use MKSA units. We choose our ` using an infinite rectangular waveguide cutoff
condition. For a lowest order mode we have ω = π/

√
ε`, or ` = π/

√
εω. Then, using ω = 2πf and ε = εrε0 and

Eq. 6, ζ =
√

4ε0εrf/πσ.

For frequencies in Hz and conductivities in Siemens/meter ζ ∼ 10−6
√
εrf/σ. Metal conductivies are in the

order 5 × 107 Siemens/meter. Thus, ζ ∼ 10−10
√
εrf . The largest dielectrics currently in use (semiconductors)

have εr ∼ 10, so for the most extreme case, ζ ∼ 10−9
√
f . Thus, ζ remains small (� 1) for frequencies approaching

low-energy X-rays (1016 Hz). In the terahertz (visible) range, ζ ∼ 10−3. This allows us to find relationships
between field components and the resonances of the cavity.

The SIBC condition is an approximation which holds for good conductors.11 The condition is

~E‖ = Zn̂× ~H‖, (8)

where Z = 1/n is the impedance of the metal, where n is the, in general complex, index of refraction of the
metal, E‖ and H‖ are the electric and magnetic fields tangent to the interface and n̂ is the unit normal out of
the metal.

3. FLOQUET MODES

The waves in the superstrate satisfy the Floquet condition due to the periodicity of the lattice. The superstrate
is filled with a nonmagnetic material (µ = 1) and a dielectric εa.

The spacial dependance of Floquet modes traveling the in ±ẑ direction is

exp[~kmn · ~r] = exp [i (kxmx+ kyny ± kzmnz)] , (9)

where the choice of sign before kzmnz is positive for upward propagating waves, and negative for downward
propagating waves. Through the rest of these calculations, if we have a ± or ∓ we’ll assume the upper symbol
refers to upward propagating and the lower symbol to downward propagating waves.

If we define κ0 ≡ 2π/λ = ω/c, then the magnitude of the incident wavevector k0 =
√
εaκ0, for non-magnetic

material. Then, the Floquet conditions on kxm, kyn and kzmn are

kxm = kx0 +mKx, kyn = ky0 + nKy, kzmn = ξmn
√
εaκ0 (10)

where m and n are integers, kx0 and ky0 are the x and y components of the incident wavevector, and Kx and
Ky are the reciprocal lattice vectors. Here

kx0 = k0 sinϕi cos θi, ky0 = k0 sinϕi sin θi, (11)

where ϕi is the inclination and θi is the azimuthal angle of the incoming wavevector, see Fig. 1(b), Kx and Ky

are

Kx =
2π
Λx

, Ky =
2π
Λy
, ξmn ≡

√
1−

k2
xm + k2

yn

εaκ2
0

, (12)

where ξmn takes values between 0 and 1 depending, essentially, on what fraction of the total energy of the wave
is traveling in the transverse direction.



3.1 Polarization Schemes

Now, for each ~kmn there are two polarizations: One polarization has Hz = 0 (TM polarization) and the other has
Ez = 0 (TE polarization). By application of Maxwell’s equations, we can relate the magnitudes of the electric
and magnetic fields for each polarization.12

For the TM polarization we choose
HTM
zmn = 0. (13)

Using conditions imposed by Maxwell’s equations, we can write the magnitude of the z component of the electric
field as

ETMzmn = ± 1√
εa

sinϕmnHTM
mn . (14)

Here our expansion coefficient is the magnitude of the magnetic field HTM
mn .

For the TE Polarization we choose
ETEzmn = 0. (15)

Using condition imposed by Maxwell’s equations, we can write the magnitude of the z component of the magnetic
field as

HTE
zmn = ∓

√
εa sinϕmnETEmn . (16)

Here our expansion coefficient is the magnitude of the magnetic field ETEmn .

3.2 Total Fields in the Superstrate

We can now write the total z components of electric and magnetic fields in the superstrate as the sum of all the
individual TM and TE modes. As a notation convention, in the expressions for incident waves, we will replace
the HTM

mn expansion coefficients with ITMmn and the ETEmn expansion coefficients with ITEmn . Then,

Hsuper
x =

∑
m,n

(
sin θmnITMmn −

√
εa ξmn cos θmnITEmn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
sin θmnHTM

mn +
√
εa ξmn cos θmnETEmn

)
ei[kxmx+kyny+kzmn(z−h/2)] (17a)

Hsuper
y =

∑
m,n

(
− cos θmnITMmn −

√
εa ξmn sin θmnITEmn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
− cos θmnHTM

mn +
√
εa ξmn sin θmnETEmn

)
ei[kxmx+kyny+kzmn(z−h/2)] (17b)

Esuper
x =

∑
m,n

(
− 1√

εa
ξmn cos θmnITMmn + sin θmnITEmn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
1√
εa
ξmn cos θmnHTM

mn + sin θmnETEmn

)
ei[kxmx+kyny+kzmn(z−h/2)] (17c)

Esuper
y =

∑
m,n

(
− 1√

εa
ξmn sin θmnITMmn − cos θmnITEmn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
1√
εa
ξmn sin θmnHTM

mn − cos θmnETEmn

)
ei[kxmx+kyny+kzmn(z−h/2)] (17d)



4. RECTANGULAR CAVITY MODES

Here we consider a cavity filled with a dielectric εc, with edges −`/2 ≤ x ≤ `/2, −w/2 ≤ y ≤ w/2 and
−h/2 ≤ z ≤ h/2, see Fig. 1(b). The normal fields Fz are

Fz(x, y) =
∑
s,l

ψsl(x, y)e±iγsl(z+h/2) (18)

where F stands in place of E or H and where ψsl are solutions to the wave equation[
∇2 +

(
εκ2

0 − γ2
)]
ψsl = 0 (19)

with appropriate boundary conditions.

Solving the wave equation (Eq. 19) gives

ψsl = Esl
{
A sin

[
αs

(
x− `

2

)]
+B cos

[
αs

(
x− `

2

)]}{
C sin

[
βl

(
y − w

2

)]
+D cos

[
βl

(
y − w

2

)]}
, (20)

where γ2
sl = εκ2

0 − α2
s − β2

l and Esl =
√

4/`w and where there are additional constraints on A, B, C, D and
on the values of αs and βl depending on the boundary conditions (perfect conductor or skin-depth approxima-
tion). Furthermore, there is a relationship between A and B as well as between C and D which allows further
simplification of this expression. See Appendix A for details. We will use the results in Appendix A to choose
which of these coefficients (A, B, C, D) to eliminate, allowing us to write ψsl = EslGsl × U(x, y), where, Gsl
is the expansion coefficient for the particular function and U is some function of x and y. Furthermore, ψsl is
normalized such that ∫ `/2

−`/2
dx

∫ w/2

−w/2
dy ψ∗qrψsl = G( q sr l )

≈ δs,qδl,r ≡ δ( q sr l )
. (21)

For future conciseness, we define N ≡ 1/(εκ2
0 − γ2) and

S(α)
s ≡ sin

[
αs

(
x− `

2

)]
S(β)
l ≡ sin

[
βl

(
y − w

2

)]
C(α)
s ≡ cos

[
αs

(
x− `

2

)]
C(β)
l ≡ cos

[
βl

(
y − w

2

)]
,

so that
ψsl = Esl

(
AS(α)

s +BC(α)
s

)(
CS(β)

l +DC(β)
l

)
. (23)

4.1 Polarization Schemes
As in the Floquet modes, there are also two polarizations: TM, where Hz = 0, and TE, where Ez = 0.

For TM polarization we have
Hz = 0 (24)

and Ezsl is
ETMzsl = EslGsl

(
S(α)
s +BsC(α)

s

)(
S(β)
l +DlC(β)

l

)
e±iγsl(z+h/2), (25)

where Bs = Dl = 0 for a perfect conductor, and Bs = −α′sζ` and Dl = −β′lζw for the skin depth approximation,
see Appendix A.

For TE polarization we have
Ez = 0 (26)

and Hzsl is
HTE
zsl = EslGsl

(
AsS(α)

s + C(α)
s

)(
ClS(β)

l + C(β)
l

)
e±iγsl(z+h/2), (27)

where As = Cl = 0 for a perfect conductor, and As = α′sζ` and Cl = β′lζw for the skin depth approximation.



4.2 Total Fields in the Cavity

As with the superstrate and substrate, we can now write the total z components of the electric and magnetic
fields in the cavity as the sum of all the individual TM and TE modes. For the upward propagating modes
we use Asl and Dsl as the expansion coefficients, and we use Bsl and Fsl as the expansion coefficients for the
downward propagating modes. That is,

Hcavity
z =

∑
s,l

Esl
(
AsS(α)

s + C(α)
s

)(
ClS(β)

l + C(β)
l

) [
Dsleiγsl(z+h/2) + Fsle−iγsl(z+h/2)

]
(28a)

Ecavity
z =

∑
s,l

Esl
(
S(α)
s +BsC(α)

s

)(
S(β)
l +DlC(β)

l

) [
Asleiγsl(z+h/2) + Bsle−iγsl(z+h/2)

]
(28b)

Then, the transverse fields are given by

~Ht = N [iεκ0ẑ ×∇tEz ± iγ∇tHz] (29a)
~Et = N [±iγ∇tEz − iκ0ẑ ×∇tHz] , (29b)

where the choice of sign is positive for upward propagating waves and negative for downward propagating waves.

5. APPLICATION OF BOUNDARY CONDITIONS

As discussed in Section 2.2, both the magnetic fields and electric displacements are continuous across interfaces
of constant dielectric. To ensure continuity of fields across an interface it is sufficient to force continuity of only
two electric or magnetic field components per polarization (i.e. Hz and Ex or Ez and Hz, etc.). Therefore, since
the total fields are written as a linear combination of two polarization states, we force continuity of four field
components.

Given our polarization, we choose Hx and Hy to remain continuous, and, to account for SIBC, we choose
εEx and εEy as the second two. We apply the SIBC on these latter two fields once at the cavity-film boundary,
and we apply the SDBC at the cavity floor.

5.1 z = h/2 Boundary

The top interface is given by z = h/2, −`/2 ≤ x ≤ `/2 and −w/2 ≤ y ≤ w/2. Here we ensure continuity of Hx

and Hy across the cavity-superstrate interface. We equate the x components of the magnetic fields evaluated at

z = h/2, multiply both sides by E∗qr
(
S(α)
q +BqC(α)

q

)∗ (
DrS(β)

r − C(β)
r

)∗
and integrate over −`/2 ≤ x ≤ `/2 and

−w/2 ≤ y ≤ w/2. We evaluate the integrals in Appendix B and get:∑
m,n

(
sin θmnITMmn −

√
εa ξmn cos θmnITEmn

)
E∗qrK( q mr n ) +

∑
m,n

(
sin θmnHTM

mn +
√
εa ξmn cos θmnETEmn

)
E∗qrK( q mr n )

=
∑
s,l

iεcκ0NslβlG( q sr l )
[
Asleiγslh + Bsle−iγslh

]
−
∑
s,l

iγslNslαsG( q sr l )
[
Dsleiγslh −Fsle−iγslh

]
(30)

Similarly, we equate the y components of the magnetic fields evaluated at z = h/2, multiply both sides by

E∗qr
(
AqS(α)

q + C(α)
q

)∗ (
S(β)
r − CrC(β)

r

)∗
and integrate, giving

∑
m,n

(
− cos θmnITMmn −

√
εa ξmn sin θmnITEmn

)
E∗qrL( q mr n )+

∑
m,n

(
− cos θmnHTM

mn +
√
εa ξmn sin θmnETEmn

)
E∗qrL( q mr n )

=
∑
s,l

iεcκ0NslαsG( q sr l )
[
Asleiγslh + Bsle−iγslh

]
−
∑
s,l

iγslNslβlG( q sr l )
[
Dsleiγslh −Fsle−iγslh

]
(31)



Now we ensure that

εaE
super
x = −εaZHsuper

y (32a)

εaE
super
y = εaZHsuper

x . (32b)

over the metallic region and εEx and εEy are continuous over the cavity. We evaluate these fields at z = h/2,
multiply by exp [−i(kxgx+ kyfy)] and integrate, piecewise, over the entire period.

We evaluate the integrals in Appendix B and get:

εa
∑
m,n

[
−
(

1√
εa
δ( g m

f n

)ξmn + ZI( g m
f n

)) cos θmnITMmn +
(
δ( g m

f n

) −Z√εa I( g m
f n

)ξmn
)

sin θmnITEmn

]
= εa

∑
m,n

[
−
(

1√
εa
δ( g m

f n

)ξmn −ZI( g m
f n

)) cos θmnHTM
mn −

(
δ( g m

f n

) + Z
√
εa I( g m

f n

)ξmn
)

sin θmnETEmn

]
+ εc

∑
s,l

iγslNslEslαsK′( g s
f l

) [Asleiγslh − Bsle−iγslh]+ εc
∑
s,l

−iκ0NslEslβlL′( g s
f l

) [Dsleiγslh + Fsle−iγslh
]

(33)

εa
∑
m,n

[
−
(

1√
εa
δ( g m

f n

)ξmn −ZI( g m
f n

)) sin θmnITMmn −
(
δ( g m

f n

) + Z
√
εa I( g m

f n

)ξmn
)

cos θmnITEmn

]
= εa

∑
m,n

[
−
(

1√
εa
δ( g m

f n

)ξmn −ZI( g m
f n

)) sin θmnHTM
mn +

(
δ( g m

f n

) + Z
√
εa ξmnI( g m

f n

)) cos θmnETEmn

]
+ εc

∑
s,l

−iγslNslEslβlK′′( g s
f l

) [Asleiγslh − Bsle−iγslh]+ εc
∑
s,l

−iκ0NslEslαsL′′( g s
f l

) [Dsleiγslh + Fsle−iγslh
]

(34)

5.2 Skin-depth approximation at cavity floor

Here, we apply the perfect electric boundary conditions (4) at z = −h/2− δ over the cavity floor. We apply the

condition on Ez, multiply by E∗qr
(
AqS(α)

q + C(α)
q

)∗ (
ClS(β)

r + C(β)
r

)∗
and integrate over the cavity floor. This

gives ∑
s,l

G( q sr l )
[
Asle−iγslδ + Bsleiγslδ

]
= 0 (35)

The condition on Hz, when multiplied and integrated similarly yields∑
s,l

G( q sr l )
[
Dsle−iγslδ −Fsleiγslδ

]
= 0 (36)

6. CONSTRUCTING A COUPLING MATRIX

At this point, we’d like to construct a coupling matrix to link the unknown quantities with the known. We are
looking for a matrix-vector equation of the form:

M~Ψ = ~Θ (37)

However, looking at the results of Section 5, we see that our known (and unknown) quantities are rank 2 tensors
(matrices). In order to get an equation like Eq. 37, we change indices.

For the Floquet mode, both m and n run from −N to N , for a total of (2N + 1)2 modes. We choose a new
index m̃ which runs from 1 to (2N + 1)2, cycling over each n for every m. We similarly define g̃ for the indices
g and h which run from −G to G. For the cavity modes, both s and l run from 1 to S, for a total of S2 modes.
We choose a new index s̃ which runs from 1 to S2, cycling over ever l for each s. We similarly define q̃ for the
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Figure 2. Results from preliminary code. 0th order (i.e. normal) TM reflection from a gold cavity, ` = 0.5µm, w = 1.75µm,
h = 2µm, and Λx = Λy = 2µm.

indices q and r which run from 1 to Q2. Then, quantities like Fmn and Gqr become Fm̃ and Gq̃ and rank 4
tensor products like F( q mr n ) become rank 2 matrices F(q̃m̃) = Fq̃m̃.

Thus, in Eqs. (30), (31), (33), (34), (35), (36), any double-indexed (in the new notation) element can be viewed
as a matrix, any single-indexed element can be viewed either as a vector or as a diagonal matrix, depending
on the case. For example, the As̃’s, etc., are turned into vectors while the ξm̃s, etc., are turned into diagonal
matrices ξm̃m̃.

Thus, we can construct a coupling matrixM and vectors ~Ψ and ~Θ as in Eq. 37.12 Then, to find the unknown
field components ~Ψ, we simply invert each equation once:

~Ψ =M−1~Θ (38)

and then the solution for each set of initial conditions can be calculated by matrix multiplication. Fig. 2 shows
some results from preliminary (incomplete) code. The plot shows 0th order (i.e. normal) TM reflection from TM
incident fields. The dips in this reflection correspond to expected diffraction wavelengths, where some energy is
reflected horizontally, decreasing the net transmission along the z direction.

7. CONCLUSIONS AND FUTURE WORK

In this paper we’ve outlined a powerful technique for modeling 2D periodic metamaterials. This method has
significant advantages over finite element or finite difference time domain simulations. This method makes use
of accurate, fast, and versatile calculations. Here, accuracy is limited by only by the precision of computer
calculations, and runs extremely fast, even on standard computer workstations; the example in Fig. 2 finishes in
a fraction of a second. Similar simulations take significantly longer (on the order of hours) to solve, especially
at optical frequencies.

Furthermore, although the structure we’ve discussed here is a fairly simple single-cavity structure, it can be
generalized to more complicated, compound structures. This analysis is needed for the multijunction analysis
which has two (or more) cavity structures of different dimensions. This requires additional expansion coefficients
for the added cavity modes, and integrals over the additional interface regions, but the fundamental analysis
remains the same. Additionally, we are not limited to rectangular cavities; any structure with functional cavity
modes (e.g. cylinders) can be similarly modeled.
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Figure 3. Graphical depiction and solutions of Eq. 42.

APPENDIX A. BOUNDARY CONDITIONS ON SOLUTIONS TO THE WAVE
EQUATION

A.1 Perfect Conductor Boundary Condition
For a perfect conductor, we require

ψTM
∣∣
S

= 0,
∂ψTE

∂n

∣∣∣∣
S

= 0, (39)

where ∂/∂n is a unit normal at the surface S.10 These conditions give values for A and B or C and D as well
as α and β. Application of these conditions on Eq. (20) gives

αs =
sπ

`
, βl =

lπ

w
, (40)

where s, l are integers and B = D = 0 for TM and A = C = 0 for TE modes.

A.2 Excellent Conductor - Skin Depth Approximation
In a nearly perfect conductor, the field does not stop immediately upon entering the metal. Instead, the mag-
nitude of the fields decay exponentially with a characteristic length δ. As discussed in Section 2.2, we apply
conditions Eqs. (39) at the skin depth, rather than at the metal surface. After simplification, these conditions
yield

αs =
α′s
`
, βl =

β′l
w

(41)

where α′s and β′l are the sth and lth roots of

tanα′ = −2α′ζ`, tanβ′ = −2β′ζw (42)

respectively, where ζ` = δ/` and ζw = δ/w, and B = −Aα′ζ` and D = −Cβ′ζw for TM and A = Bα′ζ` and
C = Dβ′ζw for TE. Eq. (42) is depicted graphically in Fig. 3(a) with numerically computed solutions in Fig. 3(b).
These solutions can be fit with an arctangent function, allowing for quicker computation of these roots.

APPENDIX B. INTEGRALS

Here we integrate over the interface between the cavity and superstrate. We will make use of the following
general integrals in our calculations:

Jµνij (a) ≡
∫ +a/2

−a/2
dτ eiµiτ sin[νj(τ − a/2)] =


eiaµi/2[νjeiaµi−iµi sin(aνj)−νj cos(aνj)]

µ2
i−ν2

j
µi 6= νj

e−3iaµi/2[1+e2iaµi (−1+2iaµi)]
4µi

µi = νj

(43a)



and

Kµν
ij (a) ≡

∫ +a/2

−a/2
dτ eiµiτ cos[νj(τ − a/2)] =


ie−iaµi/2[µi cos(aνj)+µi(−eiaµi)+iνj sin(aνj)]

µ2
i−ν2

j
µi 6= νj

e−3iaµi/2[e2iaµi (2aµi−i)+i]
4µi

µi = νj

. (43b)

Here µ stands in for kx or ky and i stands in for m or n (or g or f), respectively. Similarly, ν stands in for α
or β and j stands in for s or l (or q or r), respectively. Likewise, a stands in for either ` or w. Additionally,
the approximations noted in the equations represent that, in general, there is no inherent connection between
µi (the wavevector in the superstrate) and νj (the wavevector in the substrate). Were µi = νj these integrals
would take a different form.

Then,

K( q mr n ) =
[
Jkxαmq (`) +B∗qK

kxα
mq (`)

] [
D∗rJ

kyβ
nr (w)−Kkyβ

nr (w)
]

(44a)

L( q mr n ) =
[
A∗qJ

kxα
mq (`) +Kkxα

mq (`)
] [
Jkyβnr (w)− C∗rKkyβ

nr (w)
]

(44b)

and

K′( s g
l f

) =
[
K∗kxαgs (`)−BsJ∗kxαgs (`)

] [
J
∗kyβ
fl (w) +DlK

∗kyβ
fl (w)

]
(44c)

L′( s g
l f

) =
[
AsJ

∗kxα
gs (`) +K∗kxαgs (`)

] [
C∗l K

∗kyβ
fl (w)− J∗kyβfl (w)

]
(44d)

and

K′′( s g
l f

) =
[
J∗kxαmq (`) +BqK

∗kxα
mq (`)

] [
K
∗kyβ
fl (w)−DlJ

∗kyβ
fl (w)

]
(44e)

L′′( s g
l f

) =
[
AsK

∗kxα
gs (`)− J∗kxαgs (`)+

] [
ClJ

∗kyβ
nr (w) +K∗kyβnr (w)

]
(44f)

And, for integrals over the metallic region,

I( g m
f n

) = ΛxΛyδ( g m
f n

) − Ixy( g m
f n

) (45)

where Ixy( g m
f n

) ≡ Ix`mgIywnf and

Iaµij =

{
Λµ

π(i−j) sin
[

(i−j)aπ
Λµ

]
i 6= j

a i = j
(46)

ACKNOWLEDGMENTS

This material is based upon work supported by the DOD/DARPA SBIR PROGRAM under Contract No.
W31P4Q-10-C-0074. The views, opinions, and/or findings contained in this article/presentation are those of the
author/presenter and should not be interpreted as representing the official views or policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

REFERENCES
[1] Ebbesen, T. W., Lezec, H. J., Ghaemil, H. F., Thiol, T., and Wolff, P. A., “Extraordinary optical transmis-

sion through sub-wavelength hole arrays,” Nature 391, pp. 667–669, Feb. 1998.
[2] Bethe, H. A., “Theory of diffraction by small holes,” Phys. Rev. 66, pp. 163–182, Oct 1944.
[3] Gordon, R., “Bethe’s aperture theory for arrays,” Phys. Rev. A 76, p. 053806, Nov 2007.



[4] Shelby, R. A., Smith, D. R., and Schultz, S., “Experimental verification of a negative index of refraction,”
Science 292(5514), pp. 77–79, 2001.

[5] Zhou, D. and Biswas, R., “Photonic crystal enhanced light-trapping in thin film solar cells,” Journal of
Applied Physics 103(9), p. 093102, 2008.

[6] Bayindir, M., Temelkuran, B., and Ozbay, E., “Photonic-crystal-based beam splitters,” Applied Physics
Letters 77(24), pp. 3902–3904, 2000.

[7] Crouse, D., “Numerical modeling and electromagnetic resonant modes in complex grating structures and
optoelectronic device applications,” IEEE Transactions on Electron Devices 52, pp. 2365 – 2373, Nov. 2005.

[8] Crouse, D., Hibbins, A. P., and Lockyear, M. J., “Tuning the polarization state of enhanced transmission
in gratings,” Applied Physics Letters 92(19), p. 191105, 2008.

[9] Crouse, D. and Keshavareddy, P., “Polarization independent enhanced optical transmission in one-
dimensional gratings and device applications,” Opt. Express 15(4), pp. 1415–1427, 2007.

[10] Jackson, J., Classical Electrodynamics, John Wiley & Sons, Inc., 2nd ed., 1975.
[11] Lochbihler, H. and Depine, R., “Highly conducting wire gratings in the resonance region,” Applied Optics 32,

pp. 3459–3465, Feb. 1993.
[12] Lansey, E., Pishbin, N., and Crouse, D., “Rigorous coupled wave analysis of 2D periodic metamaterials.”

Unpublished, May 2010.


